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Abstract Analysis of properties of an electron (electrons) in a periodic two-
dimensional potential and quantised magnetic field is presented. The key role in this
description is played by the symmetry of the model determined by the magnetic trans-
lation group, together with the symmetric and unitary group according to the duality
of Weyl. The magnetic translation group is described in detail along with its irre-
ducible representations which form the Brillouin zone in magnetic field. Together
with the other two mentioned groups, it allows to characterize the system provid-
ing some good quantum numbers. These groups facilitate determination of the band
structure through the diagonalisation of the eigenvalue problem in the base adapted to
the considered symmetry. The difference between the Brillouin zone with and without
magnetic field is pointed out. Discussion is concentrated on the finite two-dimensional
systems, closed by use of Born–von Karman boundary conditions.

Keywords Tight-binding model · Magnetic translation group · Itinerant electrons ·
Magnetic Brillouin zone

1 Introduction

The problem of a charged particle (or particles) in a magnetic field is an old one but still
interesting and intensively studied. The interest in such systems has been increased
after the discovery of quantum Hall effect (integer and fractional). The system exhibits
a rich energy band structure which is very sensitive to the change of both magnetic
field and size of the system (Hofstadter butterfly). From theoretical point of view it
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is an interesting subject of study, intimately related to composite fermions (in the
context of fractional quantum Hall effect) [1–4], quantum groups, integrable systems
and application of Bethe Ansatz for two-dimensional objects [5–11].

Recently developed experimental techniques allow to measure the deatiled phys-
ical properties of two-dimensional electron systems, in both periodic potential and
magnetic field. First of all, it is worth to mention here the implementation of optical
lattices used for simulation of charged particle in a magnetic field. By this method one
can achieve an ’artificial magnetic field’ of the strength compatible with the details of
the spectrum (the lattice length can be tuned freely up to hundred angstroms) [12–14].
The observation of the recursive structure of energy spectrum (Hofstadter’s butterfly)
was reported quite recently by Dean et al. [15] for moiré superlattice arising in bilayer
graphene coupled to hexagonal boron nitride.

The advent of two-dimensional surface electron systems in semiconductors
[16–18], as well as in topological insulators [19,20] enable high resolution mea-
surements of the electronic probability density with the use of scanning tuneling sec-
troscopy [21].

We will focus in the paper on description of finite systems from the point of view
of their symmetry. This restriction is motivated by the progress in technology which
nowadays allows one to build such a system very precisely. From the other hand
we can test the theory on such systems, since the modern computers are able to
provide well approximated numerical solutions. Moreover, the modern chemistry is
also interested in finite systems, because it admits a deeper understanding of objects
of the size comparable to molecules [22–25]. The interplay between the physical,
chemical and mathematical tools is very fruitful nowadays at the level of quantum
objects.

Let us start this introduction with the main notions used in the description of charged
particles in a periodic potential and magnetic field. First consider the free electron
motion. The Hamiltonian H for a free electron in a magnetic field consists of the
kinetic energy operator

H = 1

2m
(p + eA)2 , (1)

where p is the canonical momentum and A is a vector potential of a magnetic field,
while e means the magnitude of elementary charge. There are many ways of choosing
the gauge for vector potential, but the most popular are the Landau and symmetric ones.
The detailed description of these two gauges is presented in the Sect. 2. The solution of
an eigenvalue problem of a free electron in a magnetic field was given by Landau in the
form of eigenfunctions of a one-dimensional quantum harmonic oscillator [26]. Within
the Landau gauge A = [0, Bx, 0] and using the substitution Ψ (x, y) = eiky yϕ(x) the
equilibrium point of this oscillator is shifted x ′ = x + kyl2 by the distance dependent
on the magnetic field through the magnetic length l = √

h̄/eB. The quasimomentum
ky is related to quantization of the motion along y axis. The choice of this direc-
tion and the associated gauge is arbitrary, i.e. is not determined by the symmetry, so
that an equivalent solution is obtained by the substitution Ψ (x, y) = eikx xϕ(y). The
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magnetic field is parallel to z axis, and the motion along it is free and can be considered
independently. In further discussion the perpendicular motion is omitted.

For ϕ being a function of x the solution of Schrödinger equation of the Hamiltonian
(1) is the product of the eigenfunction of the oscillator (Hermite polynomials) and the
plane wave along y axis. For movement on an infinite plane the degeneracy of these
solutions is infinite. If the area admissible for an electron is restricted to a rectangle
with dimensions Lx × L y , the degeneracy of energy levels becomes finite. To quantize
the quasimomentum ky we assume the periodic boundary conditions, which provide
the values ky = 2π

L y
m, m ∈ Z. The eigenfunctions of the Hamiltonian, however,

do not exhibit the translational symmetry along x axis, since it is broken by the
magnetic field. The quantisation in this direction is replaced by the condition for
the equilibrium point (the centre of the cyclotronic orbit). It should be placed within
the range [0, Lx ] what results in equation 0 ≤ kyl2 ≤ Lx . This way each Landau level
with energy

E =
(

n + 1

2

)
h̄ωc, n = 0, 1, 2, . . . , (2)

is degenerated with the value given by

D = Lx L yeB

2π h̄
= Φ

Φ0
, (3)

where n labels energy levels, ωc = |e|B/m is the cyclotronic frequency, Φ = BLx L y

is the magnetic flux passing through the sample, and Φ0 = h/e is the quantum of the
flux. The magnetic field B is therefore quantised in such a way that D is an integer.
The density of states for a two-dimensional electron is a series of δ functions placed
around the quantised energy values 1

2 h̄ωc, 3
2 h̄ωc, 5

2 h̄ωc, . . . In real crystal, however,
the scattering processes lead to broadening of Landau levels.

The degeneracy can be determined also without using such quasi-classical method.
One can consider also the twisted periodic boundary condition, i.e. the function is
periodic along one direction, say y, whereas periodicity along the second one is
connected with a phase. The elegant and convenient way of presentation of this
scheme is based on the fibre bundle formalism [27,28] (definition and properties
of fibre bundle can be found, e.g., in the book [29]). The base for this bundle is
formed by the two-dimensional torus while one-dimensional linear space C rep-
resents the standard fibre. Twisted boundary condition in this approach is related
to the way of gluing of fibres on the rectangle (defined by a boundary condi-
tions) edge, and the degeneracy level corresponds to Euler characteristic of the bun-
dle.

Introduction of periodic potential U (r) (a two-dimensional lattice) together with a
magnetic field changes the Hamiltonian (1) to the form

H = 1

2m
(p + eA)2 + U (r) (4)
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There are two different approaches which allow to analyse the motion of an electron
in this case. The magnitude of the interaction between the electron and these two
fields determines the choice one of them. If the periodic potential can be treated as a
perturbation one can assume that the electron is placed on the Landau level and two-
dimensional potential causes a splitting of the level. The magnitude of the splitting
and degeneracy of sublevels are determined by the magnetic flux going through the
elementary cell of the lattice. If the value of this flux is rational η = p/q, in the unit of
quanta φ0 = h/e, each Landau level splits into p sublevels. However, when the mag-
netic field is a perturbation for the band structure of Bloch electron, the corresponding
levels are splitting into q sublevels [30]. In further discussion we will consider only
the last case.

There are several approximations which allow to solve quantum problem of Bloch
electrons in a magnetic field. They differ essentially by choice of the base functions
used in the perturbation theory. We can list the following basic functions: Bloch states
[31], edge states in the k · p theory [32] and Wannier states [33,34]. For the first
type, i.e. Bloch states Ψnk(r) = eikrunk(r), with their dispersion relation En(k), one
can find eigenstates of an electron in a magnetic field by use of the Peiers-Onsager
substitution, i.e. substitution of the quasimomentum k by the operator h̄

i ∇ + eA(r).
Dispersion relation E(k) which is used in the Hamiltonian in a magnetic field, can
be found with the help of the tight binding method. This approach is useful when the
overlapping of wave functions of neighbour atoms is so substantial, that one needs to
introduce some alterations to atomic functions, but simultaneously so small that we
can use these functions as a base. The method is effectively used contemporary for
determination of the electronic structures of semiconductor nanocrystals [35–38]

Tight binding theory together with the Peierls-Onsager substitution provides the
effective Hamiltonian, whose correctness was justified by Kohn [39] and Blount [40]
in the 1960s last century. In the paper of Schellnhuber and Obermair [41], on the other
hand, one can find the first principle calculations which confirm the results obtained
by effective Hamiltonian approach.

The equivalent method giving the band structure of electrons in a magnetic field is
based on hopping Hamiltonian (it is known also as lattice tight-binding Hamiltonian)

Ht =
∑
i, j

ti j e
θi j c†

j ci , (5)

where ti j is a hopping integral between the lattice points i and j , operators c†
j and ci

are creation and annihilation operator on appropriate nodes, respectively, while θi j is a
phase defined for the edge i j . The last quantity depends on the chosen gauge through
the equation θi j = 2π

h/e

∫ j
i A · dl, where dl means the vector that is tangent to the edge

along with the integral is taken. The summation of the phase along the boundary ∂S
of the surface S leads to the formula

1

2π

∑
along ∂S

θi j = e

h

∮
∂S

A · dl = 1

φ0

∫
S

B · dS,
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which describes the magnetic flux (in the unit of quanta φ0) passing through the
surface S. Both methods, i.e. effective Hamiltonian and lattice one, give the same
band structure and eigenstates if the Peierls-Onsager substitution is treated carefully
[42].

The structure of the bands in the magnetic field has been investigated for a long time
(see papers by Harper [43,44], Hofstadter [45], Azbel [46], Wannier with coauthors
[47,48], and bibliography included there). The early works concern the square lattices
with isotropic hopping integral and interaction limited to nearest-neighbours (NN)
[45,49]. The other values of hopping integral were also considered [42,50], as well as
the different shapes of the unit cell of the lattice [51]. The interaction of distant nodes
were also taken into account in calculations. It causes removing of the degeneracy in
the centre of the band, which exists for NN interaction only [52]. The band structure
was also designed for honeycomb lattice in the frame of tight-binding approximation
[53,54], and for hexagonal lattice [55].

Thank to relations between the symmetry of the considered system and quantum
group Uq(sl2) the previous one was analysed with the help of Bethe Ansatz [5].
This approach allows to express the energy, in some region of Brillouin zone, by
the roots of algebraic Bethe equation. This region consists of selected quasimomenta
from magnetic Brillouin zone, so called midbands points for which the Hamiltonian
can be written as a linear combination of generators of quantum group Uq(sl2). The
method is especially useful in the case of large value of q, because solutions of the
Bethe equations draw together into structures called strings, i.e. the cluster of Bethe
pseudoparticles with the same real part of the spectral parameter and imaginary values
given by the simple equation [56]. This effect helps to simplify the calculations. Ana-
lytical and numerical solutions for these special points of the magnetic Brillouin can be
found in the references [7,9]. Thank to the use of Bethe equations solutions of eigen-
value problems for non-rational value of magnetic field (so called incommensurate
golden-mean flux) were obtained [7].

The problem of determination of the bands for model beeing considered is still rel-
evant. It was pointed out quite recently that some additional effects caused by a mag-
netic field should be taken into account. One can mention here the field dependence
of the hopping integral and influence of a magnetic field on the atomic energy level
[57,58]. There is a methods which allows to go beyond the tight binding approxima-
tions for wide range of applied magnetic field [58]. It is based on a diffusion method
of solving related Shrödinger equations [59,60].

The main aim of the paper is description, with the help of the symmetry given by
the magnetic translation group, of the band structure of electrons on a finite planar
lattice and in a quantised magnetic field. Attention is focused on the rational mag-
netic field, i.e. rational value of η, and this way the incommensurate case is not dis-
cussed here [45,61,62]. The eigenvalue problem is presented in the symmetry adapted
basis, and operators which enable the transitions between different symmetry bases
are introduced. The magnetic Brillouin zone, i.e. the Brillouin zone in magnetic field
is discussed in detail. It has been shown also that use of all irreducible representations
of magnetic translation group allows to consider multi-electron states in a magnetic
field.
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2 The symmetry of the Bloch electron in a magnetic field

2.1 Magnetic translation group

We restrict our considerations to the model of itinerant electrons on a planar, finite,
square lattice with the lattice constant a. The natural basis of the Hamiltonian for
single band model is the coordinate one

bo = {
j = | jx , jy〉, jx , jy = 1, 2, . . . L ,

}
(6)

where L defines the size of the lattice. Within this notation the coordinates of nodes
are given by formulas x = jx a, y = jya. In the basis (6) the action of the Hamiltonian
(5) on the element | jx , jy〉 reads

Ht | jx , jy〉 = t
(
| jx + 1, jy〉eiθ1 + | jx − 1, jy〉eiθ3 + | jx , jy + 1〉eiθ2

+| jx , jy − 1〉eiθ4
)

. (7)

This action is presented on the Fig. 1. It should be noticed, however, that the sum in
the above equation is restricted to four nearest neighbours of the element | jx , jy〉.

The symmetry of the Hamiltonian (7) in the absence of a magnetic field (all phases
θi are equal to 0) is given by the translation group

T = {
(tx , ty), tx , ty = 1, 2, . . . L

}
(8)

The eigenfunctions for this case are characterised by the irreducible representations
of T by the formula

Γ kx ky (tx , ty) = 1

L
exp

(
−2πikx tx

L
− 2πikyty

L

)
, (9)

Fig. 1 The action of the
Hamiltonian Ht on the vector
| jx , jy〉 of position basis bo. The
white circles denote the
neighbours of the node ( jx , jy)

which are included in the
Hamiltonian. The phase θi is
assigned to the edge of the cell,
and arrows indicate that the
value of the phase depends on
the direction along with the
integration of vector potential is
taken. The value L means the
dimension of the lattice in both
directions. The magnetic field is
perpendicular to the plane of the
figure
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where kx and ky form two-dimensional Brillouin zone BZ

BZ =
{
(kx , ky), kx , ky ∈

{
0,±1,±2, . . . ,

± L−1
2 for L odd

± L
2 − 1, L

2 for L even

}}
. (10)

The presence of the magnetic field essentially changes the symmetry of the model.
The action of the translation is now accompanied by the phase, whose value depends
on the gauge of the vector potential of magnetic field. This property suggests that an
operator being the product of a translation and phase factor should commute with the
Hamiltonian. Such operators form a group—the magnetic translation group.

This group, as a symmetry of an electron in magnetic field, was introduced by
Brown [63] and Zak [64,65]. The classification of such groups, for different vector
potentials was given by Opechowski and Tam [66]. Authors showed that a change of
a gauge yields an isomorphic symmetry group. The irreducible representations were
also determined with their dimensions resulted from the value of the parameter η. The
rational value of it is related to a finite dimension of IRRs whereas for the irrational
one such a kind of representation does not exist. The detailed discussion concerning
this case can be found in the paper by Boon [67]. The author demonstrated that for
irrational value of η and for magnetic field along one of the crystal direction, the
symmetry groups are of infinite order. These groups have infinite class of irreducible
representations and all of them are of infinite order.

The analysis of symmetry of the system being considered was done also by Geyler
and Popov [30]. The starting point for the discussion was the “physical representation”
defined in the coordinate basis (6). The decomposition of this representation into the
irreducible ones provided the quantum numbers for classification of the energy bands
and their degenerations. The abelian subgroup of MTG allowed to define the Brillouin
zone in a magnetic field.

The structure of magnetic translation group was also considered within the frame
of extensions of translation group by the gauge group. The technique of construction
of such extensions is based on the MacLane method [68]. Some of such extensions
were identified as MTG [69–73].

In this paper the element of MTG can be denoted as

g = (tx , ty, λ), (11)

where λ is a phase associated with the translation t = [tx , ty] (it is related to phase
factor exp(2πiλ)). In this notation the group multiplication rule for the symmetric
gauge reads

(t, λ)(t′, λ′) =
(

t + t′, λ + λ′ + 1

2
ηl

)
, (12)

where l ∈ Z and is related to the area of the parallelogram spanned by the vectors t
and t′. Hence the last term in the Eq. (12) can be written as
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1

2
ηl = 1

2

B(t × t′)
h/e

. (13)

This equation can be easily interpreted. It denotes the magnetic flux B(t × t′), in the
unit h/e of quanta of flux, penetrating the half area of the parallelogram spanned by
vectors t and t′.

The multiplication rule for Landau gauge is of the similar form

(t, λ)(t′, λ′) = (
t + t′, λ + λ′ + ηl

)
, (14)

where l ∈ Z and corresponds to the area of parallelogram spanned by vectors ty and
t ′x .

2.2 The choice of a gauge and a boundary condition

The selection of a boundary condition for a finite crystal depends on the symmetry
of the model and on the tentative constants of motion. One of approaches proposed
by Quinn and Wojs [74] is based on the notions of a Haldane sphere [75]. Within
this approach electrons are placed on the sphere with radius R and in the centre
there is a magnetic monopole B = h̄S/eR2, where 2S denotes the magnetic flux
passing through the surface. The model allows to consider multi-electrons states. This
approach admits the total angular momentum as exact quantum numbers, which is
a result of an artificial introduction of spherical symmetry (due to the geometry of
the Haldane sphere) to the model. A drawback of the approach consists in vanishing
of an ordinary linear momentum (and thus also the Brillouin zone) in description of
electronic spectra.

The Born–von Karman boundary condition is the second possible approach used
for description of electron properties in the magnetic field, however it should be used
carefully. The standard form of these conditions for wave function Ψ (r + L) = Ψ (r),
where L = [Lx , L y], can not be applied because and additional phase appears due to
the magnetic field. However there is a set of translations for which the phase factors
is equal to 1. For magnetic field whose flux φ is a rational multiple of the quantum
φ0 = h/e, these translations for a particular choice of gauge form the magnetic cell
(see the next section for detail). For a finite system the boundary conditions provide
relations between the size of the system and the value of η, the so called commensurate
conditions. For incommensurate values of η the states can never be repeated by the
translation by lattice constant [76].

The interesting discussion concerning the boundary conditions in a magnetic field
and the effective Hamiltonian theory can be found in the paper by Zak [77]. The author
concludes that the effective Hamiltonian theory can only be applied for localised states
in a magnetic field, not for extended ones. For the latter it leads to an “unusual”
quantisation in one of the spatial coordinate (the choice of the coordinate depends on
a gauge).

In this section we focus our attention on the relation between the Born–von Kar-
man boundary condition and the magnetic translation group. In order to fulfil the
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commensurate conditions, i.e. the relation between the quantisation of the magnetic
field and the size of the system, the length of the crystal should be a product of the
integer q entering the definition of η, and the lattice constant a. For such a system
we should introduce the equivalence relation between the elements of the magnetic
translation group whose translations are differing by the length of the sample

(t, λ) = (t + La, λ) = (t + Lb, λ) = (t + La + Lb, λ). (15)

These conditions mean that each group element listed in the equation acts in the
same way on the wave function and, according to the multiplication rule, product
of any two elements provides an equivalent operator of MTG. As a result we obtain
sixteen equations of the form [78]

(t1 + α1La + β1Lb, λ1)(t2 + α2La + β2 Lb, λ2) = (t1, λ1)(t2, λ2), (16)

where α1,β1,α2,β2 are integers from the set {0, 1}. The detailed form of the product
depends on the chosen gauge of a vector potential of magnetic field. Let us consider
this equations for the symmetric and Landau gauge.

For a symmetric gauge the Eq. (16) provides 16 conditions for possible values of
phases λ, which guarantee the equivalence (15). The detailed form of these conditions
can be found in our paper [78]. Let us consider here, as an example, the product
(t1 + La + Lb, λ1)(t2 + La+Lb, λ2). The result of multiplication should be equal to
(t1, λ1)(t2, λ2). The translation parts are always equal, however the phase part should
fulfil some requirements. For considered example this condition means that the value
of 1

2ηL(t x
1 − t x

2 + t y
2 − t y

1 ) should be an integer. This is satisfied for all values t1 and
t2 if it holds for t x

1 − t x
2 = 1 and t y

2 − t y
1 = 1. As a result we obtain two equations for

admissible value of η, both with the same form

η = 2n

L
, n ∈ Z. (17)

The similar calculations done for others 15 equations lead to the same solutions.
This means that the symmetric gauge together with the boundary conditions introduce
the restriction for quantisation of a magnetic field, i.e. the numerator of η should be
an even number.

For Landau gauge, according to the multiplication rule the Eq. (16) comes down to
a system of four conditions. The analysis of them results in equation

η = n

L
, n ∈ Z. (18)

The equation provides the dependence between the quantised magnetic field and
dimension of the system. It follows, that the Landau gauge is better adopted to the
square lattice closed with the boundary conditions. The restriction for possible value
of η is weaker than for the symmetric gauge.
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2.3 The structure of MTG

The notion of magnetic translation group was introduced by Zak [64]. He presented
description of the structure of MTG, distinguished its abelian subgroup, and pointed
out that the order of the group depends on the parity of the period L—the dimension
of the system. For even and odd value of L the number of group elements is equal to
2L3q and L3q, respectively.

Description of symmetry for different orientations of a magnetic field and different
gauges was done also by Opechowski and Tam [66]. They pointed out that the set of
admissible values of phase λ depends on the parity of p

λ = 0,
1

2q
,

2

2q
, . . .

2q − 1

2q
, for p odd,

λ = 0,
1

q
,

2

q
, . . .

q − 1

q
, for p even.

(19)

They also have shown the role of the maximal abelian subgroup consisting of elements
of the form (tx nx , tyny, λ), nx ny = q and nx , ny ∈ Z. This subgroup was the key for
determination of the irreducible representations of MTG.

Let us focus in the following sections on the analysis of structure of MTG. Descrip-
tion is based on our paper [79]. It will be shown, that the order of MTG does not depend
on the parity of p, however the detailed structural properties are related to it.

2.3.1 Generators of the magnetic translation group

Let us consider the rectangular lattice with its vectors a and b. Each point of the
lattice can be reached by the translation being the linear combination of the lattice
vectors. The number of sequences leading to a given node is infinite one, even for
a finite system, since we can form a closed loop and repeat them as much as we
want. Together with the translation guiding to a chosen point, the phase is increased
according to a value of η. The path along which the translation is taken is related
to the product of elements of MTG. At the end we obtain the element of the lat-
tice (connected with the translation t) and the phase, which was gathered on the
way.

Let us denote the generators of MTG by a = (1, 0, 0) and b = (0, 1, 0), where
the first element corresponds to a translation by a vector a = (1, 0) and the second
to a translation by b = (0, 1). There is given a set of integers (αi , βi ) denoting the
translation αi a +βi b at the step i . It should be noted, however, that for the elementary
transition at a given step only one of these integers is different from 0. After the N
steps of such translation we reach the lattice point with the coordinates ( jx , jy) given
by

N∑
i=1

αi = jx ,
N∑

i=1

βi = jy . (20)
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The phase corresponding to the path can be found by a suitable product of the genera-
tors a i b, and the coordinates ( jx , jy) are related to a translation t = [tx = jx , ty = jy]
which leads into that point.

The details of the discussion depend on the choice of the gauge of vector potential.
Let us consider two the most popular gauges, i.e. the symmetric and Landau ones.
For the symmetric gauge after the N translation (N products of group generators) we
obtain [79]:

(α1 + α2 + α3 + α4 + · · · + αN , β1 + β2 + β3 + β4 + · · · + βN ,

1

2
η(α1β2 − β1α2) + 1

2
η[(α1 + α2)β3 − (β1 + β2)α3]

+1

2
η[(α1 + α2 + α3)β4 − (β1 + β2 + β3)α4]

+ · · · 1

2
η[(α1 + α2 + α3 + · · · + αN−1)βN − (β1 + β2 + β3 + · · · + βN−1)αN ].

(21)

Taking into account, that αiβi = 0 the obtained phase reads

1

2
η[α1(β1 + β2 + β3 + β4 + · · · + βN )

+α2(−β1 + β2 + β3 + β4 + · · · + βN )

+α3(−β1 − β2 + β3 + β4 + · · · + βN )

+α4(−β1 − β2 − β3 + β4 + β5 + · · · + βN )

+ . . . αN (−β1 − β2 − β3 + · · · − βN−1 + βN )].

Using the relation (20) and after some arrangements of elements we obtain the
following equation for the phase λ which can be assigned to a translation t = [tx , ty]

1

2
η(tx ty + ηn), (22)

where n = −β1α2 − (β1 +β2)α3 −· · ·− (β1 +β2 +· · ·+βN−1)αN is an integer. The
first term in (22) denotes the phase which is constant for a given translation, whereas
the second one is changing according to n. The phase factor is an exponential function
of phase what means that its different values correspond to n being the elements of
the set {0, 1, 2, . . . , q − 1}.

The order of the magnetic translation group for the symmetric gauge is therefore
independent on the parity of p and reads

|MTG| = |T |q. (23)

All values of n mentioned above are achievable by appropriate translations. The
circle around the border of the lattice cell does not change the part of the phase
related to coordinates ( 1

2ηtx ty), whereas the whole phase is increased or decreased by
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Fig. 2 The structure of the magnetic translation group. The parameters of the models are η = 1/2, L = 4.
The part a corresponds to symmetric gauge whereas part b to Landau one. The translations are related to
the lattice points, and the phases are marked by the geometric symbol (the values of them are explained on
the legend) on the line associated to each point (translation)

η depending on the direction of circulation. This means that the value of n is changing
by 1, so all values from the set {0, q − 1} are possible.

Despite the fact, that the order of the group does not depend on the parity of p,
what was suggested by the Eqs. (19) obtained by Opechowski and Tam, some features
of the group structure are related to it. The structure of MTG can be demonstrated
graphically (see Fig. 2). To each translation, denoted as lattice points, we can assign a
vertical line with phases marked on it. The line we refer as a fibre. The type of fibres
depends on the parity of the parameter p. For even value of it all the fibres are the
same, whereas for odd value this is not the case. This time there are two types of fibres
which differ by the values of phases, despite having the same number of them. The
type is determined by the parity of the product tx ty in the equation for the phase (22).
In the Fig. 2 an example of the magnetic group structure for two discussed gauges and
for the finite lattice of the dimension 4 × 4 with the magnetic field given by parameter
η = 1/2 is presented.

Using the Eq. (22) each group element can be expressed by the product of generators
a and b. It is easy to check that atx bty results in element corresponding to translation
[tx , ty]

atx bty =
(

tx , ty, exp

(
2π i

1

2
ηtx ty

))
.

The additional phase related to integer n (22) can be achieved by the product of
generators corresponding to path which encircles the elementary lattice cell, located
at (tx , ty). This can be written as aba−1b−1. Eventually, the element g ∈ MTG reads

g = atx bty (aba−1b−1)n, n ∈ {0, 1, 2, . . . , q − 1}. (24)

The similar calculation can be done for the Landau gauge. With the help of the
multiplication rule (14), and using the sequence of translation described by the numbers
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αi and βi we can find the relation for a phase factor, which can be assigned to a given
lattice point (a translation vector) with coordinates (tx , ty), in the form

exp(−2π itx tyη) exp(2π iηn), n ∈ Z. (25)

The analysis of this equation reveals, that each translation t = [tx , ty] is associated
with exactly q distinct phases, for each parity of p. Each group element can written
then, by the use of product of generators as follow

g = (tx , ty, exp(−2π itx tyη) exp(2π iηn))

= bty atx (aba−1b−1)n, n ∈ {0, 1, . . . , q − 1}. (26)

2.3.2 The maximal abelian subgroup

The determination of irreducible representations of MTG is based on the induction
procedure from the maximal abelian subgroup H [30,65,66] of MTG. The lattice cell
builds by the translations from H is called the magnetic cell and magnetic flux passing
through it consists of p quanta h/e. The circulation around the magnetic cell changes
the phase by a multiple of 2π . One of possible choices of such a subgroup H consists
in increasing q times the elementary translation along y axis. In this case, an element
of H reads

h = (tx , qm, λ), m ∈ {0, 1, 2, . . . , μ}, μ = L/q. (27)

There are also other ways of choosing of maximal abelian subgroup [66]. Another one
is based on increasing of elementary cell q times, but along x axis. Both discussed
choices lead to isomorphic group. The change of gauge of vector potential also does
not alter the properties of this group.

2.4 The irreducible representations of magnetic translation group

The irreducible representation of MTG are very important in the description of dynam-
ics of Bloch electron in a magnetic field. These representations for finite and infinite
crystals were introduced by Zak together with the notion of MTG [64,65]. The similar
results were obtained by Brown, who considered the ray representation of transla-
tion group [63]. In the paper by Zak [65] a class of irreducible representations called
“physical” was characterised. It is determined by the conventional choice of the one-
dimensional representation Δ of the element h = (0, 0, λ) (h ∈ H), and all irreducible
representations induced from it are physical. Such a selection of IRR is justified by
the argumentation that the action of an element (0, 0, λ) should not induce different
change of phase of wave function and therefore only one irreducible representation is
important, whereas the others are non physical.

The representations obtained by Zak are of finite dimensions if the number of flux
quanta per elementary cell is rational. For an integer value of this quantity the magnetic
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translation group is isomorphic with the ordinary translation group and its irreducible
representations are one-dimensional.

The classification of MTG’s and their IRRs for different values and orientation of a
magnetic field was given by Opechowski and Tam [66]. All the considered represen-
tations were physical. Authors discussed also cases related to non-rational value of η.
This value provided the infinite dimension of IRRs.

The analysis of irreducible representation of infinite dimensions was presented also
by Boon [67]. He showed that the group has the infinite number of class of irreducible
representations and all of them are of infinite dimension. The more important role from
mathematical and physical point of view is played then by primary representations,
i.e. the representations which can not be decomposed into a direct sum of two disjoint
representations.

Geyler and Popov [30] considered the symmetry group of the lattice Hamiltonian
(5). They presented irreducible representations of the group generators for rational
magnetic field and parametrized them by the points of the torus Tη = [0, q−1)×[0, 1).

The relation between the magnetic translation group and Weyl-Heisenberg (WHG)
group was given by Zak [80]. The latter characterizes the symmetry of an electron in a
magnetic field whereas the former is related to the symmetry reduction caused by the
periodic potential (MTG is a subgroup of Weyl-Heisenberg group). The irreducible
representations of WHG decompose, by this reduction, into IRRs of MTG and the
multipliers are constant. The properties of both groups were analysed in the phase
space and the periodic boundary conditions are used.

In the next part of the section we focus our attention on the irreducible represen-
tations of symmetry group of the lattice Hamiltonian. We extend however the scope
of research and consider also “nonphysical” representations (s > 1). Let us start the
description with a basic information about the induction method used for obtaining
the IRRs.

The induction procedure uses the irreducible representation of the maximal
abelian subgroup, or, strictly saying, of the little group of the representation Δ

[30,65,66,81,82]. The latter coincides with maximal abelian subgroup for physical
representations and, as will be shown in the next part of this section, also for other
representations whose parameter s is in relation with magnetic field parameter η. The
further considerations are restricted to such cases therefore we present at this point
only the representation of group H.

Elements of this group in the symmetric gauge are given by the formula

(tx , qm, λ) = (tx , 0, 0)(0, qm, 0)

(
0, 0, λ − 1

2
pmtx

)
, (28)

where m ∈ (0, 1, . . . , μ − 1), and μ = L/q. The irreducible representation of H
are product of IRRs of three cyclic group and are characterised by three indices
{κx , κy, s} [66]

Δκx ,κy ,s(tx , qm, λ) = e2πiκx tx e2πiκyqme2πis(λ− 1
2 mptx ). (29)
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The indices κx and κy correspond to translations along axis x and y, respectively, and
are determined by the boundary conditions

κx = l1/L , l1 = 0, 1, . . . L − 1, (30)

κy = l2/L , l2 = 0, 1, . . . , L/q − 1. (31)

They are readily recognised as admissible quasimomenta in the presence of mag-
netic field.

It should be remarked that the choice of a maximal abelian subgroup can be done
in several ways. The above equations match the condition for which the magnetic cell
is broadened in y direction.

The parameter s labels the representations of the subgroup related to phase λ and
its range is given by formula

s = 0, 1, . . . , q − 1.

The value s = 1 corresponds to the physical representation [65]. The other values we
interpret as the number of electrons which occupy a state corresponding to the IRR
with indices (κx , κy, s) (see Sect. 4).

The next step in the induction is determination of orbits Ω of the action of MTG
on the set of representation Δ. Two representations Δ and Δ′ belong to the same orbit
if there is an element g ∈ MTG for which the following equation is fulfilled

Δ′(h) = Δ(g−1hg) (32)

for all h ∈ H. It is sufficient to consider in the role of g just representatives of H-cosets
in MTG. They can be chosen as σ j = (0, j, 0), j ∈ {0, 1, . . . L − 1}. The equation is
then in the form

Δκx κys(σ−1
j hσ j ) = Δκ ′

x κys(h), (33)

where

κ ′
x =

(
κx + p

q
s j

)
mod 1. (34)

For a given η = p
q and s the representation Δκ ′

x κys and Δκx κys belong to the same
orbit Ω for all indices κ ′

x which can be obtained from the Eq. (34) substituting j by
the value from the set 0, 1, . . . , q − 1.

There are three types of orbits parametrised by the value of s

– s = 0: each representation Δ constitutes an orbit,
– s = 1: there are μ orbits consisting of q elements,
– s > 1:

if q is divisible by s (q/s = r) - there are μs orbits consisting of r elements,
if gcd(s, q) = 1 - there are μ orbits consisting of q elements.
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The key of the method of induction is the following procedure [81]: (i) one takes a
single IRR Δi ∈ Ωi from each orbit Ωi , (ii) one determines the little group GΔi of Δi

(H ≤ GΔi ≤ MTG), (iii) one finds all admissible IRRs � of GΔi , (iv) the set of all
induced representations of the form � ↑ MTG constitutes the complete set of IRRs
of MTG.

The little group GΔi consists of such elements g′ ∈ MTG, which satisfy

Δ(h) = Δ(g′−1hg′). (35)

It can be shown that this group depends on the value of the parameter s:

– s = 0: GΔ = MTG
– s = 1: GΔ = H
– s > 1:

q is divisible by s, q/s = r : H < GΔ < MTG,
gcd(s, q) = 1 : GΔ = H.

In the following we restrict our consideration to the case GΔ = H, i.e. to the condition

gcd(s, q) = 1. (36)

All representations of this little group are allowed [81]. Under this conditions the IRRs
of MTG are induced from the IRRs of H

Γ κx κys = Δκx κys ↑ MTG.

The matrix of the representation Γ in the basis labelled by the coset representatives
σ j is given by the formula [81]

Γ
κx κys
( j,i) (g) =

{
Δκx κys(σ−1

j gσi ) if σ−1
j gσi ∈ H,

0 if σ−1
j gσi /∈ H,

(37)

where indices ( j, i) ∈ {0, 1, 2, . . . , q−1} label the rows and the columns. The product
in the Eq. (37)

σ−1
j gσi = σ−1

j (tx , mq + j ′, λ)σi =
(

tx , mq + j ′ − j + i, λ + 1

2
ηtx ( j + i)

)

belongs to the subgroup H if

j ′ − j + i = 0 mod q, (38)

what determines the coordinates of the matrix element whose value are given by the
formula Δκx κys(tx , mq, λ + 1

2ηtx ( j + i)). The remaining elements of the matrix are
equal to 0.
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3 Magnetic bands

3.1 The eigenvalue problem in the symmetry adapted basis

The lattice Hamiltonian (7) for Landau gauge is given by the formula

Ht | jx , jy〉 = t
(
| jx + 1, jy〉 + | jx − 1, jy〉 + e2πiη jx | jx , jy

+1〉 + e−2πiη jx | jx , jy − 1〉
)

. (39)

The solution of an eigenvalue problem in the coordinate basis is nothing but the
diagonalisation of the Hamiltonian matrix of the dimension L2 × L2. As a result
eigenfunctions are given in the coordinate basis and in order to obtain the band structure
we should change this basis to quasimomentum one.

In the absence of a magnetic field the construction of matrix which allows the
transformation from one basis to the other is done with the help of two-dimensional
Fourier transform whose elements are given by the formula

F( jx , jy)(kx ,ky) = 1

L
e−i( jx kx + jyky), (40)

where the vectors | jx , jy〉 of the coordinate basis label the rows whereas quasimomenta
|kx , ky〉 label the column of the matrix F . Hamiltonian H B=0

t (without the magnetic
field all the phases θ in the Eq. (5) are equal 0) in the quasimomentum basis

H ′B=0
t = F†H B=0

t F (41)

is of the diagonal form.
In the presence of a magnetic field the problem of diagonalisation of the Hamiltonian

is more complicated and requires the symmetry given by the magnetic translation
group. It is used to determine the matrix F B which transform the coordinate basis to
symmetry adapted one [83]. The construction of such a matrix is done with the help
of a projection operator

P f
1l = n f

|MTG|
∑

g∈MTG
Γ

f
1l (g

−1)δ(g). (42)

The action of this operator on the vectors of coordinate basis gives the non-zero
vectors only when they belong to the subspace V f spanned by the basis of irreducible
representation Γ f . The index f labels the the IRRs of MTG, i.e. it is related to three
numbers (κx , κy, s). n f means the dimension of those representations, whereas the
bottom indices 1l determine the row and column of their matrices. The symbol δ(g)

denotes the representations of MTG in the coordinate basis and is defined by the action
of the group generators on the elements of the basis |j〉

δ(1, 0, 0)| jx , jy〉 = | jx + 1, jy〉, (43)

123



2302 J Math Chem (2013) 51:2285–2316

δ(0, 1, 0)| jx , jy〉 = e−2πiη jx | jx , jy + 1〉. (44)

The representation δ decomposes into irreducible ones

δ =
∑

f

c f Γ
f . (45)

The matrix F B is constructed with the help of projection operators (42) introduced
above. Briefly speaking the procedure starts with determination of the matrix P f

11,
then we should choose from it c f linear independent columns (v1

1, v2
1, . . . , v

c f
1 ). The

rest of the vectors which build the basis of subspace V f is obtained from the equation
vi

l = P f
1l v

i
1, for l = 2, 3, . . . , n f , i = 1, 2, . . . , c f . If this scheme is repeated for all

representation Γ f and the columns are properly arranged we finish, eventually, with
the matrix of the form

The rows are label by the vectors of coordinate basis
{

b1
0, b2

0, . . . , bL2

0

}
∈ b0, whereas

the columns are indexed by the irreducible representations with J denoting the number
of them. The shadowed rectangle corresponds to the representation Γ 1 and creates the
operator F1

B which reduces the eigenvalue problem of the Hamiltonian H to selected

quasimomentum k1 = 2πκ1 =
(

2πκ1
x , 2πκ1

y

)

Hκ1 =
(

F1
B

)†
H F1

B . (46)

Similarly each of the rest operators F f
B reduce the eigenvalue problem to given quasi-

momentum k f =
(

2πκ
f

x , 2πκ
f

y

)
, whereas operator F B transforms the Hamiltonian

to quasi-diagonal form H ′ = (
F B

)†
H F B with the shape as below
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Each block on the diagonal is indexed by quasimomenta and consists of n f identical
submatrices labelled by index γ . Each of them has rows and columns labelled by index
γ ′ according to the schema as below

The dimension n f of irreducible representations for which the Eq. (36) is fulfilled is
equal to q.

From the above consideration we see that the quantum state is characterised by four
quantum numbers |κx , κy, γ, γ ′〉. The numbers γ and γ ′ correspond to degenerations
of energy level and the numbers of magnetic subbands, respectively. The quantum
states can be also described by the density matrices

ρκx ,κy ,γ,γ ′ = |κx , κy, γ, γ ′〉〈κx , κy, γ, γ ′|. (47)

The index s, which characterises also the IRRs of MTG is omitted in the above nota-
tions, since for one-electron states it is constant and equals 1.

One can find also another solution of eigenvalue problem presented in this section
(see e.g. [42,84,85]). The Eq. (39) through the appropriate substitution can be con-
verted to Harper equation which depends only on one variable. It can be written as a q
dimensional matrix whose parameters are kx and ky . In the magnetic field the allowed
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value of quasimomentum k are different from those related to Brillouine zone without
magnetic field and their values are defined by the irreducible representation of MTG.
Therefore in the magnetic field we should consider the reduced Brillouine zone (see
e.g. [42]). The detailed description of this Brillouine zone is presented in the next
section.

The Harper matrix corresponds to Hamiltonian Hkx ,ky (46), i.e. Hamiltonian
obtained with the help of the projection operator. This method allows to determine,
in addition, the degeneracy of the energy levels denoted by index γ (Hkx ,ky consists
of q submatrices which are identical). The method requires, however, as nearly every
group theory method, laborious calculation. Fortunately, nowadays with the help of
computers these computations are not so onerous as before. As the result we obtain
the full set of quantum numbers which describe the states of an electron. The method
provides also the set of nonequivalent quasimomenta which form the Brillouine zone
in a magnetic field.

3.2 Magnetic band Brillouin zone

The band structure in solid state physics is defined over Wigner–Seitz cell of the
reciprocal lattice, i.e. over the first Brillouin zone. For the discussed two-dimensional
lattice and turned off magnetic field the Brillouine zone consists of the set of these
quasimomenta which are the indices of IRRs of the translation group T. Their values
are determined by the Born–von Karman periodic conditions.

The problem is more complicated at the presence of a magnetic field. In this case the
boundary condition task can be solved by applying the Haldane sphere, for which the
space boundary disappears [75]. The magnetic field is generated by Dirac monopole
placed in the centre of the sphere with electrons distributed on the surface. The good
quantum number is a angular momentum and the technique used in description of
many-electrons atoms [86] can be transferred to system of electrons on that surface
(see e.g. review paper [87]).

In this paper we will use however quasimomentum k as a quantum number and
describe the energy band structures with help of them, i.e. consider the bands over the
Brillouin zone. The choice of boundary conditions, in spite of their imperfection in
application for finite crystals [88], is motivated by the benefit provided by them. As a
result we obtain description of electron dynamics as a function of quasimomentum and
can use the energy band scheme, widely applied in the solid state physics. The detailed
description of the Brillouin zone in a magnetic field together with the discussion
concerning finite crystals can be found in our paper [89].

The first step in construction of the Brillouin zone in a magnetic field is determi-
nation of abelian subgroup H ∈ MTG, which defines the magnetic cell of the lattice
(see Fig. 3). Its size depends on the magnetic field through the parameter q, however
the shape of it is not definitely established. We can choose it as rectangle with one
of its edges q times longer than the other, but the direction of the longer edge can be
selected along x , as well as along y axis. Both directions are equally good.

The magnetic cell defines the new lattice, for which one can determine the recip-
rocal lattice and find the corresponding Brillouine zone in magnetic field—magnetic
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Fig. 3 The magnetic cell of
two-dimensional square lattice,
m ε {0, 1, . . . μ}

Brillouin zone (MBZ). The comparison between the reciprocal lattice with and with-
out magnetic field shows that the number of allowed quasimomenta is fewer in the
former [28]. We say that the Brillouin zone is rarefied in one direction. The values
of quasimomenta, connected with the indices of the group H (see Eqs. 29, 30, 31)
through the formulas kx = 2πκx , ky = 2πκy , are given by

kx =
{

0,
2π

L
,

4π

L
, . . . ,

(L − 1)2π

L

}
, (48)

ky =
{

0,
2π

L
, . . . ,

(L/q − 1) 2π

L

}
. (49)

All nonequivalent representations Γ of MTG are determined if the procedure of
induction is carried out for selected representations Δ, being representatives of a class
of nonequivalent representations of H (see Eqs. 33, 34). This means that the index κx

and this way also the quasimomentum kx does not take all values from Eq. (48). The
energy bands are defined over the nonequivalent set of quasimomenta from Brillouin
zone. According to the discussion in Sect. 2.4 the number of orbits (equivalence
classes) of representations of H, under the condition gcd(s, q) = 1, is equal to μ, and
each orbit consists of q elements. This way the original set kx (48) is q-tuply reduced.

The set of nonequivalent quasimomenta (kx , ky) over which the band structure is
defined will be eventually q2-tuply rarefied. This rarefication appears along both per-
pendicular directions. In one direction it is connected with the translational symmetry
given by magnetic cell. The relations between the quasimomenta, as a result of equiv-
alence between the irreducible representations of MTG, cause the rarefication in the
second direction. The Brillouin zone determined in this way is referred in the literature
as “small magnetic Brillouin zone” [80], however we prefer to use the name “magnetic
band Brillouin zone” (MBBZ in short) since the band structure in a magnetic field is
defined with help of it.

3.3 The rarefied Brillouin zone and degeneration of states

The Brillouin zone in a magnetic field is q2 times rarefied. The number of quantum
states should be constant what means that the degeneracy of energy levels is increased
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in spite of creation of magnetic subbands. In the approach considered in this paper
the energy band in a magnetic field splits into q subbands. These bands, however, are
defined over rarefied BZ what results in q-tuply degeneration of each level. This can
be easily checked

no. of kx × no. of ky × no. of subbands × degeneration of bands = L

q

L

q
qq = L2.

The complete set of quantum numbers is defined in the Sect. 3.1. Using the cor-
responding density matrix ρκx ,κy ,γ,γ ′

(Eq. 47) we can define the operator Pκx ,κy ,γ
′

which projects onto the subspace of states related to eigenvalue Eκx ,κyγ ′

Pκx ,κy ,γ
′ =

q∑
γ=1

ρκx ,κy ,γ,γ ′
. (50)

We can use it for testing concurrence between the vectors k ∈ BZ and the eigenstates
of the energy Eκx ,κy ,γ ′ by introducing the operator

c
κx ,κy,γ

′
k = 1

q
〈k|Pκx ,κy ,γ

′ |k〉. (51)

With the help of it we obtain information how the vector k matches the subspace
defined by the indices γ ′ and κ = (κx , κy). In this way we can determine the relations
between the quasimomenta in the presence of magnetic field and those without it. The
degeneration can be described then by introducing the notion of state condensations.
This effect is in some way similar to the rearrangement of states in k space when the
magnetic field is turned on, what results in de Haas-van Alphen phenomena. Using
the greatest values of the operator (51) we can select the set of k, for which the
concurrence between them and the state κ ∈ MBBZ is the greatest. In other words
in a magnetic field some of the quasimomenta disappear from BZ, but in such a way,
that their residues can be observed in these quasimomenta from MBBZ, for which the

value of the operator c
κx ,κy ,γ

′
k is greater than 0. Thereby the operator can measure the

concurrence of the states from BZ and MBBZ. The example of such calculations for
finite system can be found in our paper [89].

4 Multi-electron states in a magnetic field

The possibility of construction of many particle Hamiltonian was mentioned already by
Brown [90]. He noticed that properties of multi-electron magnetic translation operators
are similar to those of the single electron ones, except that the phases are multiplied
by the number of electrons in the systems. This number is related to the parameters
s of appropriate irreducible representations of MTG, which we use to describe the
multi-electron states.

The one-electron states in the magnetic field and periodic potential are characterised
by the irreducible representations Γ κx ,κy ,s with parameter s = 1, i.e. by the “physical”
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representations. It will be shown in this section that IRRs with parameter s > 1 are
also important from physical point of view. W. Florek was the first who pointed out
that such kind of representations can be used for description of system of two electrons
[91]. He considered the tensor products of two representations and demonstrated that
they describe the system of two charged particles in a magnetic field. Multi-electron
states analysed by the use of product of IRRs can be found in others papers of this
author [92,93]. The method was used also for classification of states of trion X±
(the system consisting of two holes and one electron or two electrons and one hole)
[94]. The argument for using all IRRs of MTG, even those described by Zak as “non-
physical” [65], one can find in the paper [95]. The justification was based on the
algebraic relations between the charge of the particle, magnetic field and the size of
finite system. The discussion was conducted for wide class of vector potentials which
are the linear function of coordinates Aα = ∑

β aαββ, α, β = x, y, z.
This section concern the way of description of multi-electron states in the magnetic

field proposed by us in paper [96]. The key role in it is played by the representations
of magnetic translation group. Starting from the representations of MTG defined in
coordinate space we build their tensor products, and finally decompose them into
irreducible representations. Clearly this decomposition consists of representations Γ

with parameter s > 1 and equal to the number of particles in the system. This method
is somehow similar to that proposed by Florek, however he has used the product of
IRRs. Our further consideration will be restricted to the system of identical particles–
electrons. For making a presentation more clear we focus our attention on the system
of three electrons (identical particles contrary to different ones considered by Florek),
keeping in mind that the change of number of electrons is straightforward. It should be
noticed, however, that increase in number of particles results in rise of computational
complexity, especially in the case of permutation and unitary groups.

4.1 The space of three electrons

We consider as in previous sections the square lattice of the dimension L×L . Electrons
can jump from one node of the lattice to its nearest neighbours and their positions fully
describe the orbital (spatial) state of an electron. The space available for particles is
limited in a finite system and is enclosed by Born–von Karman boundary conditions.
The additional restriction is provided by the Pauli principle since one has to take into
account the spin of the electrons. This means that only two electrons can have the
same position, having simultaneously the opposite spin projections.

We label now the base for one-electron states introduced in Sect. 2 using integers

bO =
{
|u〉, u ∈

{
1, 2, . . . , L2

}}
, (52)

where u denotes the coordinates of node | jx , jy〉. The space of single-electron states,
referred to as orbital space, can be considered as a linear closure over the vectors of
the basis bO

hO = lcCbO . (53)
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The spin space reads

hs = lcC2̃, (54)

where 2̃ = {+,−} is a set of projections of spin s = 1/2. The total single-electron
space is the tensor products of both spaces h = hO ⊗ hs .

The tensor product of h, in turn, allow us to consider the multi-electron states, e.g.
three-electron h⊗3 = h ⊗ h ⊗ h. The electrons are fermions, so from the whole space
of states

h⊗3 = h{3} + h{2,1} + h{13}, (55)

one should select only the last term. Its presentation as a tensor product of orbital and
spin space reads

h{13} = h{3}
O ⊗ h{13}

s + h{2,1}
O ⊗ h{2,1}

s + h{13}
O ⊗ h{3}

s . (56)

For electrons (spin s = 1/2) only the last two subspaces are available. The upper
indices in formulas (55) and (56) denote the partitions λ of 3.

4.2 The Hamiltonian

The lattice Hamiltonian for a single particle is of the form

Ht = −t
∑

D,C,σ

|Cσ 〉〈Dσ | exp(2πiϑDC ), (57)

where D and C denote the nearest neighbours of a given node, σ is the spin projection
along z axis, andϑDC is a phase associated to the edge connecting nodes. The parameter
t is a hopping integral defined as constant on each edge.

The Hamiltonian for three electrons is written as a suitable sum of tensor products
of single-electron Hamiltonian and identity operator I as

H 3
t = Ht ⊗ I ⊗ I + I ⊗ Ht ⊗ I + I ⊗ I ⊗ Ht . (58)

Within the model we are able to consider Coulomb repulsion between pairs of particles
with the same coordinates (but different spin projection). We can write this part of
Hamiltonian as

Hu = H12 + H13 + H23, (59)

where the term Hi j represents the repulsion between particle i and j and can be
written as follows
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H12 = U
∑

C,D �=C,σ (|C ↑〉 ⊗ |C ↓〉 ⊗ |Dσ 〉) (〈C ↑ | ⊗ 〈C ↓ | ⊗ 〈Dσ |) ,

H13 = U
∑

C,D �=C,σ (|C ↑〉 ⊗ |Dσ 〉 ⊗ |C ↓〉) (〈C ↑ | ⊗ 〈Dσ | ⊗ 〈C ↓ |) ,

H23 = U
∑

C,D �=C,σ (|Dσ 〉 ⊗ |C ↑〉 ⊗ |C ↓〉) (〈Dσ | ⊗ 〈C ↑ | ⊗ 〈C ↓ |) .

(60)

The parameter U is a measure of repulsive force between pairs of electrons, and is
given as a multiple of parameter t . The Hamiltonian HU is known as a Hubbards
Hamiltonian introduced first time in quantum chemistry by Pople [97] and Pariser and
Parr [98,99]. In solid state physics it was formulated independently by Hubbard [100],
Gutzwiller [101] and Kanamori [102].

The full Hamiltonian will be taken as the sum of defined terms

H = H 3 + HU . (61)

4.3 Irreducible bases for the system of three electrons

Thanks to separation of orbital and spin parts (Eq. 56), three-electron system can be
studied only in orbital space since the permutational symmetry of the spin space is
already fixed by the principle of Pauli. Our further description will be restricted to the
symmetry in the orbital space.

In this space three groups act: the permutation group �3, the unitary group U (L2)

permuting the states, and the magnetic translation group. The irreducible represen-
tations of mentioned groups introduce the symmetry adapted basis for which the
Hamiltonian (61) reaches a quasidiagonal form. The basis determined by the IRRs of
symmetric and unitary group introduce the total spin as an exact quantum number,
whereas the IRRs of MTG allow to diagonalize eigenvalue problem in the basis of qua-
simomenta belonging to the magnetic band Brillouin zone. The operators transforming
the eigenvalue problem between discussed bases provide the whole description of the
system of three electrons, i.e. a complete set of quantum numbers: total spin S, qua-
simomentum k ∈ MBBZ and index of magnetic subbands γ ′.

Let us consider first the eigenvalue problem in the basis adapted to the symmetry
given by symmetric group. The basis of IRRs of �3 can be written as [103]

birr
O = {|λt y〉, λ  3, t ∈ WT(λ), y ∈ SYT(λ)} , (62)

where WT(λ) is the set of Weyl tableaux of the shape λ, filed in semistandardly by
letters of the alphabet 2̃, and SYT(λ) denotes the set of all standard Young tableaux
of the same shape λ in the alphabet of indices of particles (WT(λ) and SYT(λ) is
standardly used as the basis for the irrep Dλ of U (L2) and Δλ of �3, respectively).
Description of symmetric group and its representation can be found in the book by
Sagan [104], whereas its application in quantum chemistry is described in paper by
Karwowski [105]. The basis of the spin part of the space of three electron states is
given by
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birr
s =

{
|λ̃, M〉

}
, (63)

where λ̃ is a transposition of partition λ, and M ∈ SSYT(λ̃) is a semistandard Young
tableaux, i.e. the indices are placed in the tableaux in non-decreased order in rows and
strictly increased order in columns. M has the meaning of projection of the total spin
of the electrons.

Basis (62) can be constructed by use of the projection operator which allows to find
such states, which demonstrate requested permutational symmetry [106]

P(λ,t,y) = const
∑
σ

〈y(t)|σ |y〉σ. (64)

σ ∈ �3 denotes a permutation of three-particle states | j1, j2, j3〉, where ji means the
coordinates of the i-th particle. The term 〈y(t)|σ |y〉 is an element of the matrix of
IRRs of the symmetric group. The symbol y(t) denotes the Young tableaux obtained
from Weyl tableaux through the appropriate exchange of state numbers by particle
numbers (detail can be found in our paper [96]).

With the use of projection operator we can build the matrix K which transform the
eigenvalue problem from coordinate basis to the symmetry adapted one. This matrix
is also know in the literature as “Kostka matrix written on the level of basis” [107].
The element of this operator reads

K |λ,t,y〉
| j1, j2, j3〉 = 〈 j1, j2, j3|

∑
σ

〈y(t)|σ |y〉σ | j ′1, j ′2, j ′3〉, (65)

where the rows are labelled by | j1, j2, j3〉 and columns by |λ, t, y〉. The Hamiltonian
in this new basis is of the form

The rows and the columns in blocks (labelled by λ) on the diagonal are numbered by
pairs (t, y) of Young tableaux y and Weyl tableaux t . Thanks to the relation between
partitions λ and λ̃ we can assign the total spin to each submatrix. The cross in the right
bottom corner of the matrix denotes the non-physical states, i.e. states impossible for
three electrons due to the Pauli principle.

Diagonalization of the Hamiltonian in the basis of quasimomenta was already dis-
cussed in Sect. 3.1, where the transformation matrix F B was also introduced. It should
be adapted to the case of multi-electron system by taking the appropriate reducible and
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irreducible representations with parameters s > 1. The single-electron representation
δ is used for construction of δ⊗3 which is related to the system of three electrons. Its
decomposition into irreducible representations of MTG

δ⊗3 =
∑

κx ,κy ,s

m(κx , κy, s)Γ κx ,κy ,s (66)

contains only such of them, whose parameter s = 3. The factor m(κx , κy, s)determines
the multiplicity of representation Γ in this decomposition. Eventually, the projection
operator reads

P
κx ,κy ,s
1l = q

|MTG|
∑

g∈MTG
Γ

κx ,κy ,s
1l (g−1)δ⊗3(g). (67)

q denotes the dimension of the Γ , and parameter s is equal to 3. With the use of this
operator one can construct the matrix F B which allows to diagonalize the Hamiltonian
for three electrons. This time the blocks on the diagonal are labelled by the total
quasimomenta of the system. The method results in energy band structure for three
electrons defined over the magnetic band Brillouin zone.

The method presented above allows to describe the states of three electrons in a
magnetic field and periodic potential. We obtain the whole set of quantum numbers:
total spin of the system, the set of admissible quasimomenta which form the magnetic
band Brillouin zone and, in this way, the energy band structure. It should be noticed,
however, that from all obtained states one has to exclude non-physical ones, i.e. such
states which are impossible for particles with the spin 1/2. For elimination of these
states in the basis of quasimomenta we can use the operator K † FB which describes
the transformation between the discussed bases

〈λ, t, y|K † FB = 〈κx , κy, s|. (68)

In our paper [96] one can find an example of such approach concerning the finite
system of the size 3 × 3 with a magnetic field given by parameter η = 1/3. Despite
the small size of the system, it allows to present all basic properties of the model.

5 Discussion and conclusions

We have considered here the problem of structure of energy bands of a rectangular
plaquette with periodic boundary conditions in a quantized magnetic field. To this
aim, we have exploited the symmetry of the system, given by the magnetic translation
group. It has to be stressed that the system consists of a plaquette, taken together with
a definite amount of quanta of magnetic flux, so that each admissible value of total
flux coreresponds to a distinct MTG, characterised by the ratio η = p/q. We have
presented the structure of magnetic subbands, with both indices, the label of a subband
and the degeneracy index emerging as basis sets of IRR’s of MTG.
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The key role in description of magnetic energy bands in a finite plaquette is
played by magnetic translation group, by means of its irreducible representations.
The structure of this group is discussed in relation to gauges of the vector poten-
tial A. It is pointed out that the detailed structural properties of MTG slightly
depend on the chosen gauges (the symmetric and Landau gauges are described).
This dependence is observed in the structure of group elements (g = (tx , ty, λ)),
i.e. in the set of phases admissible for a given translation t. Each translation is
accompanied by the same set of phases, but their all values are identical for Lan-
dau gauge, whereas for symmetric one they form two different sets. The order of
group does not depend on the value of p and is the same for both considered
gauges. These properties are characteristic for both finite and infinite planar lat-
tices.

The induction procedure, which provides irreducible representations of mag-
netic translation group, is extended to the case s > 1. This extension is straight-
forward under the condition gcd(s, q) = 1, for which the induction is car-
ried out from the maximal abelian subgroup H. The procedure allows us to
determine irreducible representations for a one-electron system, as well as for
a multi-electron one. For both cases the energy bands in a magnetic field are
defined over the admissible values of quasimomenta k, constituting the magnetic
band Brillouin zone. The IRR provides also additional quantum numbers char-
acterising the band structure, i.e. the degeneracy number and the index of sub-
bands.

With the help of IRRs of MTG one can construct a transformation matrix, which
changes the coordinate basis to symmetry adapted one. The eigenvalue problem in the
latter is of the quasi-diagonal form, and can be easy solved (even analytically) for the
size related to nanosystem.

We focus our attention on description of Brillouin zone in a magnetic field.
The field causes the rarefication in the set of quasimomenta which constitute the
Brillouin zone without magnetic field. The first step in rarefication is connected
with the magnetic cell, the cell related to the translational symmetry in a mag-
netic field. Translations by the distance being the multiplicity of size of this cell
are not accompanied by the phase (strictly saying the phase is a multiplicity of
2π ). Quasimomenta related to these translations constitute a new, magnetic Bril-
louin zone. The equivalence relation between IRRs of MTG causes additional
diluteness of MBZ, and results in magnetic band Brillouin zone. Magnetic field
splits an ordinary band into q-subbands, but since the order of final rarefica-
tion becomes eventually q2, one can observe q-tuply degeneration of each sub-
bands.

It should be stressed that irreducible representations of MTG with the index s > 1
are also important from physical point of view. They can be used to describe the system
of s electrons (modulo q) in a magnetic field. The approach is similar to that used for
the analysis of multi-electron atomic spectra. The essence of this approach is the
separation of orbital and spin part of the space of states along with the permutational
symmetry. Additional assumptions are Pauli principle and consideration of mutual
Coulomb repulsion between pairs of electrons (Hubbard model). One can obtain, in
this way, the energy band structure of multi-electrons states.
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4. J. Jacak, R. Gonczarek, L. Jacak, I. Jóźwiak, Application of Braid Groups in 2D Hall System Physics:
Composite Fermion Structure (World Scientific, Singapore, 2012)

5. P. Wiegmann, A. Zabrodin, Bethe-ansatz for the Bloch electron in magnetic field. Phys. Rev. Lett.
72, 1890–1893 (1994)

6. P. Wiegmann, A. Zabrodin, Quantum group and magnetic translation: Bethe ansatz solution for the
Harper’s equation. Mod. Phys. Lett. B 08, 311–318 (1994)

7. Y. Hatsugai, M. Kohmoto, Y.-S. Wu, Explicit solutions of the Bethe ansatz equations for Bloch
electrons in a magnetic field. Phys. Rev. Lett. 73, 1134–1137 (1994)

8. L.D. Faddeev, R.M. Kashaev, Generalized Bethe ansatz equations for Hofstadter problem. Commun.
Math. Phys. 169, 181–191 (1995)

9. Y. Hatsugai, M. Kohmoto, Y.-S. Wu, Quantum group, Bethe ansatz equations, and Bloch wave func-
tions in magnetic fields. Phys. Rev. B 53, 9697–9712 (1996)

10. A. Abanov, J. Talstra, P. Wiegmann, Asymptotically exact wave functions of the Harper equation.
Phys. Rev. Lett. 81, 2112–2115 (1998)

11. K. Hoshi, Y. Hatsugai, Landau levels from the Bethe ansatz equations. Phys. Rev. B 61, 4409–4412
(2000)

12. M. Aidelsburger, M. Atala, S. Nascimbene, S. Trotzky, Y.-A. Chen, I. Bloch, Experimental realization
of strong effective magnetic fields in an optical lattice. Phys. Rev. Lett. 107, 255301 (2011)

13. K. Jimenez-Garcia, L. LeBlanc, R. Williams, M. Beeler, A. Perry, I. Spielman, Peierls substitution
in an engineered lattice potential. Phys. Rev. Lett. 108, 225303 (2012)

14. J. Struck, C. Ölschläger, M. Weinberg, P. Hauke, J. Simonet, A. Eckardt, M. Lewenstein, K. Sengstock,
P. Windpassinger, Tunable gauge potential for neutral and spinless particles in driven optical lattices.
Phys. Rev. Lett. 108, 225304 (2012)

15. C.R. Dean, L. Wang, P. Maher, C. Forsythe, F. Ghahari, Y. Gao, J. Katoch, M. Ishigami, P. Moon, M.
Koshino, T. Taniguchi, K. Watanabe, K.L. Shepard, J. Hone, P. Kim, Hofstadter’s butterfly and the
fractal quantum Hall effect in moiré superlattices. Nature. May (2013). doi:10.1038/nature12186

16. M. Morgenstern, J. Klijn, C. Meyer, R. Wiesendanger, Real-space observation of drift states in a
two-dimensional electron system at high magnetic fields. Phys. Rev. Lett. 90, 056804 (2003)

17. K. Hashimoto, C. Sohrmann, J. Wiebe, T. Inaoka, F. Meier, Y. Hirayama, R. Römer, R. Wiesendanger,
M. Morgenstern, Quantum Hall transition in real space: from localized to extended states. Phys. Rev.
Lett. 101, 256802 (2008)

18. S. Becker, M. Liebmann, T. Mashoff, M. Pratzer, M. Morgenstern, Scanning tunneling spectroscopy
of a dilute two-dimensional electron system exhibiting Rashba spin splitting. Phys. Rev. B 81, 155308
(2010)

19. T. Hanaguri, K. Igarashi, M. Kawamura, H. Takagi, T. Sasagawa, Momentum-resolved Landau-level
spectroscopy of Dirac surface state in Bi2Se3. Phys. Rev. B 82, 081305 (2010)

20. P. Cheng, C. Song, T. Zhang, Y. Zhang, Y. Wang, J.-F. Jia, J. Wang, Y. Wang, B.-F. Zhu, X. Chen, X.
Ma, K. He, L. Wang, X. Dai, Z. Fang, X. Xie, X.-L. Qi, C.-X. Liu, S.-C. Zhang, Q.-K. Xue, Landau
quantization of topological surface states in Bi2Se3. Phys. Rev. Lett. 105, 076801 (2010)

21. K. Hashimoto, T. Champel, S. Florens, C. Sohrmann, J. Wiebe, Y. Hirayama, R.A. Römer, R. Wiesen-
danger, M. Morgenstern, Robust nodal structure of Landau level wave functions revealed by Fourier
transform scanning tunneling spectroscopy. Phys. Rev. Lett. 109, 116805 (2012)

22. R. Kapral, Discrete models for chemically reacting systems. J. Math. Chem. 6, 113–163 (1991)
23. M. Defranceschi, C. Le Bris, Computing a molecule: a mathematical viewpoint. J. Math. Chem. 21,

1–30 (1997)
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